Addressing the Key Constraints to Increasing Milk Production from Small Holder Dairy Farms in Tropical Asia

John B. Moran

Profitable Dairy Systems, 24 Wilson St, Kyabram Vic 3620, Australia

ARTICLE INFO

Received: April 10, 2013
Revised: April 12, 2013
Accepted: April 14, 2013

Key words:
Constraints
Milk production
Small holder dairy systems
Tropics

*Corresponding Address:
John B. Moran
jbm95@hotmail.com

ABSTRACT

The dairy industries of tropical Asia have failed to keep pace with the speed of dairy development in Western countries over recent decades. Granted, the tropical environment is not ideal for dairy cows as high temperatures and humidities and seasonality of rainfall reduce both the nutritive value of available forages and the level of cow comfort, hence the production potential of the stock. In addition, many of the farmers, usually small holders with less than 10 milking cows, have not been able to develop the skills of efficient milk production. This has primarily been due to poor extension services more so than lack of technical knowledge on tropical dairy farming. The constraints to profitable dairy farming in tropical Asia are many and varied and can be categorised into institutional, government, socio-economic, technical and post-farm gate. This review lists 35 key on farm constraints to milk production technology, based on their position in the dairy production chain, together with a range of possible solution to overcome each one. The future for small holder dairy farming in tropical Asia is optimistic so long as the industry can rectify many of these constraints to improving domestic production of raw milk, particularly those at the farm level.

INTRODUCTION

As a result of applied dairy research, development and extension over the last 20 years, Western countries have produced quite sophisticated dairy production systems (Little, 2012). Herd sizes have grown, efficient feeding systems have evolved and many farmers routinely monitor test results on their cows for milk production, composition and quality and for mastitis. They then use this information for making decisions on culling milking cows and for breeding genetically improved stock. High labour costs have led to much mechanisation, such as machine milking and forage conservation, while grazing cows can harvest their own forages far more efficiently than can farmers. Low population pressures, hence relatively cheap land, have allowed these farms to expand in both size and cow numbers. Unfortunately the dairy industries of tropical Asia have failed to keep pace with the speed of such dairy development in Western countries (Devendra, 2001).

There are many reasons for the productivity and efficiency of small holder dairy (SHD) farming has not greatly improved over the last two decades. Numbers of cows have greatly increased in most Asian countries, largely through government support for social welfare and rural development programs. The increased demand for milk (accentuated through school milk programs) and the concept of national food security are the driving forces behind many dairy development initiatives. However in terms of milk production per cow and feed inputs per kg of milk produced, improvements have been slow (Falvey and Chantalakhana, 1999).

Granted, the tropical environment is not ideal for dairy cows as high temperatures and humidities and seasonality of rainfall reduce both the nutritive value of available forages and the level of cow comfort, hence the production potential of the stock (Moran, 2005). In addition, many of the farmers, usually small holders with less than 10 milking cows, have not been able to develop the skills of efficient milk production. This has primarily been due to poor extension services more so than lack of technical knowledge on tropical dairy farming.

SHD farmers, with socio-economic and agro-economic conditions vastly different to those in Western dairy industries, cannot readily adopt the science and technology available in developed countries. Even the
most appropriate technology is rarely transferred to small holders due to a lack of effective services. It is essential that any production technology being transferred is relevant to the needs of small holders as well as being feasible, given their local support networks of dairy cooperatives, advisers (government and agribusiness), creditors and milk handling and processing infrastructures (Devendra, 2001).

Chantalalakhan (1999) categorised the factors limiting SHD production into
- Institutional factors, such as dairy cooperatives, suppliers of credit, training, extension services
- Government policies, such as development programs, milk promotion, dairy boards
- Socio-economic factors, such as farmer education, off-farm jobs, traditional beliefs
- Technical factors, which can be further categorised into feeding, breeding, health
- Post-farm gate factors, such as milk processing, marketing and consumption

For SHD farmers to expand and intensify there must be:
- Adequate infrastructure and marketing opportunities
- Access to reliable markets
- Promotion of dairy development through government policy
- Availability of credit for purchasing of livestock and planting pastures
- Available productive and adapted forage species
- Ready access to information
- Farm management systems which ensure adequate year-round feed supplies
- Management of animal wastes
- Disease control measures
- Adequate hygiene for milk collection

Swot on small holder dairy farming

Prior to assessing the constraints to dairy production technology, it is worthwhile summarising a recent industry study of SHD farming in the tropics. The SWOT analyses provide a strategic planning tool to evaluate the industry’s strengths and weaknesses. It is undertaken in four parts, assessing the business or industry’s strengths (S), weaknesses (W), opportunities (O) and threats (T). Although Table 1 was undertaken specifically for Indonesia’s SHD industry by Anon (2005), it is applicable to any SHD industry in tropical Asia.

Anon (2005) then concluded that SHD farming in Indonesia, as in other tropical Asian countries:
- improves the food security of milk producing households
- creates employment opportunities throughout the entire dairy chain (for both producers and processors)
- is a powerful tool for reducing poverty and creating wealth in rural areas
- can incur relatively low production costs

Regional constraints to milk production in Indonesia

In the early 2000’s a series of strategic planning workshops were conducted in Indonesia, in East and West Java, to identify and prioritise the key constraints for milk production and to develop action plans. Burrell and Moran (2004) summarised these as follows:

Constraints in East Java

The following were the priority industry issues in East Java, together with some of the action plans for industry development:

1. **Low cow productivity**: improve management of feeding, reproductive management and milk harvesting
2. **Low milk price**: reduce costs of production, improve milk quality, mediate on milk pricing, find alternative markets
3. **Poor milk quality**: improve milking hygiene at both farm and post-farm gate, improve milk composition through better feeding management
4. **Poor feed quality and availability**: identify better forage species (e.g. legumes), appoint quality control teams for concentrate supplies, utilise marginal land for forages
5. **Co-operative management**: reduce management structure and merge small co-operatives, improve post-harvest technology, improve calf and heifer rearing practices

There were other industrial issues raised but not discussed in detail. These included the need to promote fresh and manufactured dairy products, improve technology transfer, stimulate farmer motivation, work towards autonomy of co-operatives and improve collaboration between government agencies and training organisations.

Constraints in West Java

A similar list of priority industry issues was developed independently for West Java, with some of the action plans for industry development summarised as follows:

1. **Human resources**: improve knowledge, skills and attitudes of farmers and support staff
2. **Poor feed quality and availability**: increase area of land for growing forages, overcome seasonality of forage supplies, reduce variability of concentrate quality
3. **Low capital investments in industry**: invest in infrastructure for post-farm gate industry support
4. **Small scale of farming**: increase herd sizes, overcome shortage of breeding stock
5. **Insufficient technology**: increase supply of breeding bulls, improve feed supplies, diversify farming systems, value add milk in farming areas to help overcome farmers’ low cash flows
6. **Institutions**: improve co-ordination amongst service providers, introduce better control over milk quality, improve efficiency of administration in institutions

There were other industry issues raised but not discussed in detail. These included the need to promote fresh drinking milk, facilitate and support milk marketing and develop post-farm gate technology in milk processing.

The nine key activities of dairy farming

Although there are constraints throughout the entire dairy supply chain, this review will deal mainly with those on-farms, namely the constraints in dairy production technology. Many years ago, a manager once said to me “do not come to me with a list of problems without their
Table 1: Findings of a SWOT analysis of Indonesia’s SHD industry (Anon. 2005)

<table>
<thead>
<tr>
<th>Components of SWOT</th>
<th>Findings</th>
</tr>
</thead>
</table>
| **Strengths** | Low production costs
| | High farm income margins
| | Low liabilities
| | Relative resilience to rising feed prices
| | SHD farmers are then cost competitive and resilient to market fluctuations
| | They thus provide a competitive source of milk supply to imported dairy products
| **Weaknesses** | Lack of knowledge and technical skills
| | Poor access to support services
| | Low capital reserves and limited access to credit
| | Low labour productivity (small herd sizes and low output per cow)
| | Poor milk quality
| | SHD farmers are often unable to take advantage of existing market opportunities
| **Opportunities** | Growing demand for dairy products in developing countries
| | Likelihood of increased milk returns
| | Major potential to increase labour productivity
| | Great potential to increase milk yields
| | Employment generation
| | Significant opportunities to improve the demand (quality and milk price)
| | Significant opportunities to improve the supply (improving production technology)
| **Threats** | Policy support in developed countries
| | Exposure from competitive business forces
| | Underinvestment in dairy chain infrastructure
| | Unsuitable dairy development plans
| | Environmental concerns such as a high carbon footprint
| | Increasing consumer demand for food safety
| | Succession of dairy farms
| | Increasing local wage
| | SHD rarely meets its full potential because of many threats, particularly the last four

Fig. 1: The nine steps in the supply chain of profitable dairy farming
possible solutions”. In the light of this worldly statement, as well as listing the key constraints, this review highlights some approaches to address each constraint. This provides an extensive, but not exhaustive, list of management practices to rectify each constraint.

On any dairy farm, no matter its size or location, the dairy production technology can be broken down into 9 key activities, which can be considered as steps in the supply chain of profitable dairy farming (Moran, 2009a). Just as any chain is only as strong as its weakest link; each step in this supply chain must be properly managed. Weakening any one link through poor decision making can have severe ramifications on overall farm performance and hence profits. In chronological order of their role in ensuring a profitable dairy enterprise, the “links” are presented in Figure 1.

Addressing the on farm constraints to dairy farming

The on farm constraints to SHD dairy production technology in tropical Asia are many and varied. Thirty five of the key ones are listed in Table 2. They are categorised using the nine key activities from Figure 1 and complemented with a range of possible solutions to overcome each one. An extra category “Other on farm constraints” is included in this table to take into account those covering farm business skills.

Cow colonies: potential benefits and problems

In many tropical Asian countries, considerable attention has been given to large scale investments in “cow colonies”. These consist of large dairy sheds, holding 50 or more cows that are owned by a number of SHD farmers, and presumably nearby development of large areas of forage production. Although small holders still own and manage their own herds in these large sheds, the perceived benefits of cow colonies lie in the magnitude of size of the total herd management. Such an approach can overcome many constraints to production but may introduce others as listed below:

Potential benefits of cow colonies

- Greater investment potential since cooperatives have more borrowing power than individual farmers
- Use mechanical forage choppers and milking machines
- Employ contract labour to rear young stock
- Grow large areas for forages, such as maize, for livestock feeding
- Less wastage in recycling manure to forage production area, through building effluent ponds to minimise volatisation of nitrogen from urine
- Bulk handling of conserved forages using large scale silage bunkers

Table 2: Key constraints to improved milk production on tropical Asian small holder dairy farms and possible approaches to solutions

<table>
<thead>
<tr>
<th>Key activity</th>
<th>Key constraints</th>
<th>Approaches to solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Soils and forage management</td>
<td>a. Low yields of forage</td>
<td>Use inorganic fertilisers as well as manure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduce nitrogen volatilisation of shed effluent by directing it into water storage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Optimise forage agronomy (soil preparation, weed control)</td>
</tr>
<tr>
<td></td>
<td>b. Poor forage quality</td>
<td>Use inorganic fertilisers as well as manure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use most appropriate forage species for region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consider other forages such as tree legumes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduce harvest intervals</td>
</tr>
<tr>
<td></td>
<td>c. Shortage of dry season forages</td>
<td>Consider silage making of wet season forages</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plan year round forage supplies</td>
</tr>
<tr>
<td>2. Young stock management</td>
<td>a. High calf mortality</td>
<td>Better parturition management to minimise likelihood of infecting new born calf</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ensure use of semen or bulls with low calf birth weights</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Improve colostrum feeding program (Quantity, Quality, Quickly)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pay greater attention to navel dipping with iodine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Better shed hygiene</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Develop skills in identifying potentially sick calves</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Better health management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Identify causes of death or sickness and change management accordingly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Improve calf housing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimise stress in calf shed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consider feeding less milk to encourage concentrate intakes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Be more aware of fluid replacers v antibiotics for treating calf scours</td>
</tr>
<tr>
<td></td>
<td>b. Poor post weaning growth rates</td>
<td>Feed adequate amounts of concentrates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ensure calf concentrates have 18% protein</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Feed less forages to stimulate concentrate intakes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Better health management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ensure routine Clostridial vaccination program</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monitor post weaning growth rates</td>
</tr>
<tr>
<td></td>
<td>c. High wastage rates (from birth to conceiving in 2nd lactation)</td>
<td>Dairy cooperatives could consider heifer farms</td>
</tr>
<tr>
<td>3. Nutrition and feeding</td>
<td>a. Low quality of by-products and formulated concentrates</td>
<td>Routine laboratory testing of ingredients and formulation</td>
</tr>
</tbody>
</table>
b. Poor performance of cows during early lactation (poor peak and daily milk yields, delayed cycling)
- Ensure best forages for cows in early lactation, never rice straw
- Ensure enough forages are fed (30 to 50 kg fresh grass per cow per day)
- Monitor total dry matter intakes and increase if insufficient
- Consider wilted fresh forages to stimulate intake
- Ensure at least 16% protein in total ration
- Ensure all feeds are palatable
- Ensure adequate clean drinking water
- Provide Ca & P supplements in formulation
- Check if sufficient rumen buffers in concentrates
- Do not make concentrates and water into a slurry
- Chop forages to reduce selection and wastage
- Address any heat stress issues

c. Cows (particularly high genetic merit cows) do not cycle for many weeks after calving
- Ensure sufficient forages and concentrates are fed
- Check to see if rapid loss in weight or body condition
- Ensure at least 16% protein in total ration
- Consider vet checking for ovarian or uterine health
- Plan year round sourcing (growing or purchasing) of quality forages
- Ensure year round supplies of by-products and formulated concentrates
- Ensure adequate supplies of drinking (and washing) water throughout the dry season
- Ensure adequate cow comfort throughout the year

d. Seasonality of milk production
- Check Milk Income less Feed Costs (MIFC)
- Be aware of marginal milk responses if feeding too much
- Set realistic target milk yields and feed to achieve them
- Ensure ration is balanced for nutrient contents
- Maybe feeding too many cows for available feed supplies
- Feed fewer cows better

e. Little profits in milking cows
- Check floors for ease of walking on them
- Consider foot bath for all stock
- Check ration if too much concentrates causing laminitis
- Undertake locomotion test and treat affected cows

4. Disease prevention and management

a. Problems with lameness
- Identify subclinical cases with California Mastitis Test
- Ensure one towel to wash only one cow policy
- Treat every infected cow with antibiotics ensuring withdrawal period is followed
- Milk infected cows last
- Initiate routine dry cow antibiotic therapy
- Consider culling chronically infected cows
- Follow procedures as in Young stock management

b. Problems with mastitis
- Develop skills in identifying potentially sick stock
- Routinely inspect stock for external parasites
- Isolate sick stock
- Improve routine use of vaccinations
- Routinely use quality and viable pharmaceuticals
- Reduce the degree of exposure by improving shed hygiene
- Consider testing for internal parasite egg counts
- Find better trained and more practical veterinarian
- Reduce any overuse of antibiotics

c. High calf and heifer morbidity and mortality
- Follow procedures for poor post weaning growth rates in Young stock management

d. General animal health problems
- Better feeding management during early lactation
- Check AI techniques
- Can veterinarian confidently undertake pregnancy diagnosis?
- Pay closer attention to heat detection

e. High number of services per conception
- Improve AI techniques or check that technician is sufficiently skilled
- Pay closer attention to heat detection
- Consider vet checking for ovarian or uterine health

d. Low % mature cows are
- This is a simpler measure of poor reproductive performance so follow
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b. Most suitable genotype for the system</td>
<td>b. High incidence of animal health problems due to poor shed hygiene</td>
<td>b. Poor milk quality (bacterial contamination)</td>
<td></td>
<td>b. Poor profitability of dairy farming</td>
</tr>
<tr>
<td>c. Difficulty of collecting robust data from genetic improvement programs</td>
<td>c. Reduced forage quality due to high temperatures and rainfall</td>
<td>c. Address any limiting feed nutrient deficiencies</td>
<td></td>
<td>c. Low capital resources for investing in farm infrastructure</td>
</tr>
<tr>
<td>d. Genetics</td>
<td>d. Genetics</td>
<td>d. Ensure sufficient forage intake to maintain milk fat content</td>
<td></td>
<td>d. Poor dairy farming skills</td>
</tr>
<tr>
<td>e. Genetics</td>
<td>e. Genetics</td>
<td>d. Maximise cow comfort so cows will maintain their appetite</td>
<td></td>
<td>e. Underdeveloped entrepreneurial skills in dairy farmers</td>
</tr>
<tr>
<td>e. Increasing the proportion of heifer calves</td>
<td>e. Genetics</td>
<td>e. Improve milking hygiene (hot water, detergent, sanitiser)</td>
<td></td>
<td>e. Poor farmer-management dairy coop relationships</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e. Ensure machine milkers are operating effectively (short milking times, correct pulsation rate)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- Easier communication between advisers and farmers and between farmers themselves
- Easier to implement training programs involving practical skills as well as technical theory
- Easier to monitor post training application of new skills
- Better motivation of farmers to improve management practices
- Easier monitoring of individual farmer’s milking hygienic practices and hence individual remuneration for better quality milk
- The concentration of farmers in the one place provides an ideal opportunity to introduce other motivation techniques such as regular awards for best management practices
- Better coordination for forage production, cow feeding, insemination, animal health, milk handling etc.
- Training of farmers in specialist skills such as machine milking or calf rearing
- The installation of cooling units on site
- More rapid cooling of milk and greater availability of hot water for more effective cleaning and sanitising equipment
- Increased likelihood of sufficient milk production to justify small value adding operations to benefit small dairy cooperatives
- Greater potential returns to the local dairy cooperative, hence the farmers themselves
- Unfortunately such impressive facilities go hand in hand with high profile projects such as stocking them with imported pregnant Friesian heifers. The high mortality rates so far experienced in countries such as Indonesia, suggest that the current colony feeding and herd management has yet to be improved to benefit from these high genetic merit animals.

Potential problems with cow colonies
- The sheds are constructed and filled with cows before the forage production area has been developed, leading to many poorly fed cows
- Insufficient attention placed on growing out non-revenue generating, young stock
- Poorly planned forage production areas, e.g. with minimal water for irrigation during the dry season
- Insufficient land allocated to forage production, partly because of provision of insufficient daily forage allocations to achieve target milk yields
- Incorrect perception that rice straw, sugar cane tops and over mature maize stover are suitable forage sources for milking cows, particularly when target milk yields are 15 L/cow/day or more
- Lack of understanding of the potential of forage and tree legumes as important forage sources for high yielding cows
- Potential spread of disease because of variable management between individual farmers, e.g. during calf rearing, mastitis if using milking machines
- Poor concept of the need for more sophisticated milking hygiene when using milking machines, e.g. regular replacing of milkliners and testing of machine performance
- Continual breakdown of machinery, choppers and milking machines

- Need for highly trained and well skilled labour for year round supply of quality forages
- Need for senior managers to develop both short term and long term views on development program
- Difficulties of regularly sourcing finances for completion of these large scale capital development projects, such as provision of milking equipment, durable forage choppers
- Inherent problems of passing over responsibility to individuals within small management teams. The larger the operation the more essential that skilled individuals be given more responsibility in specialist areas, such as forage production, animal health, milk quality
- Management teams for large scale cow colonies should not be expected to oversee that of any nearby small holder farms
- Need for senior managers to find and keep quality staff with capabilities of solving both day to day small management problems as well as contribute to large scale development. This problem could be addressed by employing bright young animal science graduates who would be prepared to live as well as work in villages near cow colonies.
- With the penalties imposed by milk processors, returns on these large capital investments are markedly reduced because of the low unit milk returns through poor quality milk. Small investments, such as steam cleaners, small hot water units become even more effective in light of the large capital costs of sheds, silage bunkers etc.
- As with all small holder ventures, it is more profitable to “feed fewer cows better”

Poorly resourced SHD farmers, whose businesses are often in “survival mode”, can become very individualistic and take time to develop the cooperative, sharing nature required for successful cow colonies (Falvey and Chantalakhana, 1999). This has been given as a common reason for their poor success rate in countries with relatively new SHD industries such as Indonesia.

Using current cow milk yields to assess adequacy of the current farm management

The dynamic nature of dairy farming makes it difficult to develop a simple set of criteria with which to assess current management skills. The term Key Performance Indicators (KPI) has been derived to describe a series of measures of dairy farm performance with which to provide realistic targets following improvements in feeding, herd and farm management. Such a set of KPI for SHD farming have recently been published by Moran (2009b). All these KPI can be quantified to provide guidelines as to which ones require priority in any dairy farm improvement program. Although some are relatively easy to quantify, others are quite difficult. Probably the simplest, most commonly used, single measure of SHD farm performance is the average milk yield of the milking cows. The correct term for this figure is “rolling herd average” as it is the average milk yield of all the milking cows, which on any one day will be at various stages in their lactation cycle.
Asian dairy farms

Table 3: Interpreting the adequacy of dairy farm management from cow milk yields. Range in average herd milk yields on tropical Asian dairy farms

<table>
<thead>
<tr>
<th>Herd milk yield (kg/cow/day)</th>
<th>Adequacy of dairy farm management practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Very poor feeding and herd management and low genetic merit cows (or milking buffalo)</td>
</tr>
<tr>
<td>7</td>
<td>Typical of many SE Asian smallholder farms, even with high grade Friesians</td>
</tr>
<tr>
<td>9</td>
<td>Gradual response with grade and crossbred Friesian cows to improved feeding, herd, young stock and shed management.</td>
</tr>
<tr>
<td>11</td>
<td>Milk yields of 15 kg/day are considered acceptable by many government dairy advisers.</td>
</tr>
<tr>
<td>13</td>
<td>Potential level in lowland humid tropics following improved management of body condition throughout lactation</td>
</tr>
<tr>
<td>15</td>
<td>High genetic merit cows in tropical highlands or lowland dry tropics with excellent farm management</td>
</tr>
<tr>
<td>17</td>
<td>Typical peak milk yields in herds with 25 kg/cow/day rolling herd averages</td>
</tr>
<tr>
<td>19</td>
<td>Unrealistic in SE Asia except where all major constraints to milk production have been overcome</td>
</tr>
<tr>
<td>20</td>
<td>30 Typical peak milk yields in herds with 25 kg/cow/day rolling herd averages</td>
</tr>
<tr>
<td>25</td>
<td>20 High genetic merit cows in tropical highlands or lowland dry tropics with excellent farm management</td>
</tr>
<tr>
<td>30</td>
<td>19 Potential level in lowland humid tropics following improved management of body condition throughout lactation</td>
</tr>
<tr>
<td>35</td>
<td>18 Typical of many SE Asian smallholder farms, even with high grade Friesians</td>
</tr>
</tbody>
</table>

This single value provides a summation of all the important aspects of SHD farm management, so any interpretation must take into account a diversity of feeding, herd and farm factors (Moran, 2012). Accordingly, many dairy specialists may query its usefulness as a single measure of dairy farm performance. However, it is routinely used by farmers to describe their farm’s performance in relation to their neighbour’s farm and also in relation to production targets provided by many government advisers. In addition, it is often quoted by government officials when summarising the stage of development of their national dairy industries. Table 3 describes the adequacy of the farm’s dairy farm management practices using the rolling herd average.

There are other factors and KPI to consider when interpreting such data, as follows:

- It is important to differentiate between rolling herd averages and peak milk yields
- Should also consider milk composition as indicators of feeding management, for example:
 - low milk fat can indicate possible subclinical rumen acidosis
 - high milk protein can indicate good dietary energy intake
 - however milk lactose levels are fairly constant
- Excessive body condition is indicative of low protein diets, due to:
 - inability of cow to partition nutrients from body reserves to milk synthesis
 - poor fertility as cows cannot easily cycle hence conceive
- Very poor body condition is indicative of low energy intake as:
 - High genetic merit cows preferentially partition body reserves to milk synthesis
 - Cows will not cycle due to excessive weight loss
- Herd dynamics can also indicate adequacy of dairy farm management
 - Excessive number of dry non-pregnant cows can indicate very poor farm management
 - Low percentage of lactating adult cows can indicate poor farm management

Conclusions
After several decades of dairy development in many Asian countries, typical milk yields per cow per day still range between 8 to 10 kg as compared to average yields of 20 to 30 kg in developed countries. In addition, the average calving interval of dairy cows on SHD farms is commonly as long as 16 to 20 months, when it could be reduced to 14 to 15 months. With regards to young stock management, heifer ages at first calving are more commonly 30 to 36 months rather than the 24 to 28 months commonly found in temperate, more developed dairy industries. These clearly show the low levels of farm productivity in tropical Asia. Many technical solutions are available (as in Table 2) but they must be carefully selected so they will be suitable for small farmers and their socio-economic conditions. This means that scientists and extension worker must be able to understand factors influencing the acceptance when transferring such technology to farmers. Scientific knowledge alone cannot solve small scale farm problems (Falvey and Chantalakhana, 1999).

Policy makers should also resist the all too common assumption that development efforts should move from small holders towards supporting larger scale, “more efficient” milk producers to meet growing consumer demand. Instead, growing demand should be used as a stimulus to help continue and sustain SHD enterprises particularly when they face increasing barriers to participate in value chain markets (Ahuja et al., 2012).

If well organised, SHD can compete with large scale, capital intensive “high tech” dairy farming systems as practiced in both developed and developing countries. However SHD development plans must include strategies to increase competitiveness in all segments of the dairy industry chain, namely input supply, milk production, processing, distribution and retailing (APHCA, 2008; Otto et al., 2012). The future for SHD farming in tropical Asia is optimistic so long as the industry can rectify many of the constraints to improving domestic production of raw milk, particularly those at the farm level.

REFERENCES